MiColEC Project - “Micro-hubs Colaborativos para a Economia Circular”

Specification of the Component for
Automatic Generation of APls for
Integration with Logistics Platforms

June 2022



Cofinanciado por:

YYYapeEira = | EYeY
Fui Eul “
e o o 14-20 B noniomova <] 2020 o Dosanvonimerto Regionsl

Document information

Delivery date:
Version: 0.2

Responsible Partner:

Dissemination level

Public
Revision history

MiColEC Project - Specification of the Component for Automatic Generation of APIls for
Integration with Logistics Platforms



Date Editor Status Version Changes

10 March 2022 Draft 0.1 Initial Draft

20 June 2022 Draft 0.2 Complete Draft
Contributors
Logimade Lda

ARDITI - Agéncia Regional para o Desenvolvimento da Investigacdo, Tecnologia e Inovagdo

Universidade da Madeira

IL Technologies, Lda




Introduction
MiCoLEC - context and objectives

The Solution
Architecture
Rapid REST APl Management and Generation Component
Literature Review and related work
DEMO Models
Fact Model
Action Model
Our low-code platform approach
Simple CRUD Operations
Query Based Data Providing
Matching internal action rules with external endpoints
Matching local endpoints with internal action rules
Extending the Action Meta Model's EBNF grammar
Automatic APl documentation generation
Component Implementation strategy

Risks and mitigation

Bibliography

O oo O O,

11
13
14
15
15
17
18
19
22
22

23
24



Introduction

In this project, a micro-hub of logistic companies is expected to participate in a cooperative,
while still competitive, package delivery marketplace that will effectively improve their overall
performance. This improvement is achieved by gains in efficiency levels (e.g. route sharing),
less waste (e.g. deduplication of courier routes), and increased trust in cooperation through the
platform’s technology. To this end, an innovative digital platform is proposed to allow trustworthy
and accountable information sharing between the participants. In particular, this platform
promises to allow, for instance, package handoff between competing companies in a completely
transparent and secure way, while ensuring that even if something goes wrong it is possible to
trace the package movements and assess liabilities. To support the platform, MiCoLEC
proposes a blockchain-based system to manage interactions between participants and allowing
most of the processes to be run on smart-contracts that transparently enforce fairness and that
cannot be tampered with.

Along this document, we briefly describe the main goals for the project and provide details on
how the platform will be implemented. Here we provide an overview of the platform’s
architecture and its components as well as how they should integrate with each other. We then
focus on the Rapid REST API management component describing how it fits the high-level
overview and how it will be integrated with the remainder of the platform as well as the existing
systems. Then, we look at some potential implementation risks and how we intend to mitigate
them and end the document with some final remarks.



MiCoLEC - context and objectives

Collaborative micro-hubs are a new logistical concept in which a group of delivery companies
(express) collaborate among themselves by sharing means and resources of delivery of
shipments in a network of common logistical centers installed in strategic areas of urban
centers, essentially with a view to operating costs reduction, service quality improvement and
coverage of more geographic areas without large initial investments. On the other hand, this
same concept makes it possible to reduce urban ftraffic, with all the resulting advantages,
namely the reduction of air pollution, the number of road accidents and improvement of the
quality of life within urban areas. Despite the enormous advantages of collaborative micro-hubs,
their implementation is a complex challenge, whose success lies in the implementation of
solutions that solve the problem of trust between different transport operators in the exchange of
information and execution of shared operations between them.

The circular economy brings together a set of reuse, recycling and sustainable end-of-life
processes for the massive amount of products that the consumer economy produces daily,
presenting itself today as the most viable and promising way to reach the necessary levels of
environmental sustainability that the planet urgently needs. The advantage of the circular
economy in relation to other ecologically sustainable philosophies of life is based on the fact that
the processes it promotes can be introduced without significant changes in the lifestyle of
modern societies. However, the effective implementation of circular economy processes
depends on solutions to a set of challenges, among which the need to create economic models
to encourage the continued participation of final consumers in circular economy processes, and
the availability of supply of reverse logistics services (from the consumer) with adequate levels
of cost and quality of service.

This project proposes to develop a practical solution that addresses these 2 problems head on,
through the application of blockchain technology (distributed ledger technologies) for the
implementation of a robust digital solution to solve the collaboration and trust issues that are at
the base of the limitation of the implementation of collaborative micro-hubs, since they have the
potential to record all transactions of the micro-hub, TEEs, producers, end consumers and
collection and recycling centers, in a verifiable, permanent and transparent way for all interested
agents.

On the other hand, the project provides for the creation of a new digital token (cryptocurrency),
called “bit circle”, whose management will also be codified in the blockchain and which will be
attributed to final consumers as an incentive to participate in circular economy processes. Both
the allocation of digital tokens to end consumers and the management of transactions by
exchange of services between transport companies will be carried out using smart-contracts,
which are also registered in a transparent and verifiable way for all stakeholders on the
blockchain.



The Solution

This section describes the proposed solution that meets the project requirements in regards to
the generation of API’s.

Architecture

The proposed architecture, as depicted in Figure 1, is a multi-layered approach. At the center of
the proposed design is the blockchain component. The blockchain serves as the data repository
log where all transactions, that is deliveries, order status, etc. are recorded. This component,
which will be described in more detail in the following section, provides much-needed
transparency, privacy and resiliency to all platform participants.

The deployment of the blockchain component will be in permissioned private mode, where the
infrastructure is owned and deployed by the project consortium. In this way, ownership and
transaction fees become much more manageable in the long run. The downside is the greater
cost of ownership at the beginning and possibly greater barriers to entry for new participants.

New participants can either join the consortium, meaning they must run their blockchain node
helping support, maintain and manage the platform, or, on the other hand, join the platform as a
simple participant and to do so, connect to the deployed infrastructure and consume the
exported APIs and integrate them with their own existing infrastructure.

Coupled with the blockchain node there will be a backend instance managed by each
participant of the consortium, and deployed in their own infrastructure. The role of the backend
is to abstract the intricacies of the blockchain and provide an easier to integrate and a more
familiar interface, further lowering the barriers to entry for new participants. The backend will be
responsible for interfacing with the blockchain, for interfacing with a Distributed Data Repository
where auxiliary and intermediate data can be stored. In addition, the backend will export
interface APIs and Event Queues that will be consumed by the participants of the platform.

As mentioned previously, new carrier participants just need to consume and integrate the
exported APIs into their own existing infrastructure. In this way, there is minimal intrusion and
changes to the way they currently operate, even integrations with Web/Mobile apps should be
seamless with the proposed design.



Private Blockchain

Blockchain nodes belonging
to the consortium

Smart Contracts: Token,
Marketplace and Status

=
(_%0
A\

Blockchain

Backend

I

Distributed
Data Repository

Public and Private Key

q q integration and managment
Carrier Carrier 9 9

Infrastructure Infrastructure

M H - M

Current Infrastructure

Integration with current
infrastructure

Figure 1. Proposed multi-layered architectural approach

Rapid REST APl Management and Generation Component

This project foresees the specification and development of a component of automatic
generation and management of APlIs for integration with logistics platforms, for integration of the
blockchain system to support collaborative micro-hubs, with the functionalities already
implemented in traditional logistics platforms, as well as the development effort of these same
functionalities directly on the micro-hub blockchain solution.

The use of REST APIs as the backend web service, is an increasingly popular approach for
data management in enterprises. APIls (Application Programming Interface) provide
programmatic access to service and/or data within an application or a database. REST

MiColEC Project - Specification of the Component for Automatic Generation of APIls for
Integration with Logistics Platforms



(Representational State Transfer) is an architectural style and approach to communications
often used in web services development and follows a few architectural constraints.

Backend software development is a demanding task that can be quite time consuming, for
example, handling data integrity, confidentiality, availability and privacy as well as properly
handling hundreds of requests/tasks simultaneously. Also, implementing such services requires
major knowledge and qualifications on the topic.

Low-code platforms open the opportunity of automatic generation of APls, both for incoming and
outgoing data and/or service actions. Using data models of a low-code information system, it
should be possible to easily create endpoints for providing simple lists of data items or even the
results of complex queries or operations, by simple drag and drop operations in a friendly GUI,
as well as for enacting internal tasks on the local system based on calls made by external
systems. Likewise, we can also automatically scan provided data by external APls that our
system can call and match it with internal data and rules, also in a friendly GUIL. The aim is to
facilitate the integration of external information systems with the local system, based on our
low-code approach.

This section presents our approach for Rapid REST APl Management (RRAM) based on DEMO
Models [1]. A DEMO based low-code platform (from here onwards referred to as DBLCP) is
being developed by ARDITI. One of its components uses Blockly' that, following a formal
Extended Backus-Naur Form (EBNF) grammar, allows users to easily configure business rules
for implementing internal business logic. Blockly is a library that adds a visual code editor to
web and mobile applications. The Blockly editor uses interlocking, graphical blocks to represent
code concepts like variables, logical expressions, loops, and more. It allows users to apply
programming principles without having to worry about syntax or the intimidation of a blinking
cursor on the command line[2]. We aim to take advantage of our experience with Blockly and
develop a new component of DBLCP which will allow us to manage ingoing and outgoing API
interfaces by using a user-friendly GUI. And not only configuration and data format/attributes of
the APIs might be generated in a (semi-)automatic fashion, but also their documentation might
be automatically generated, using Swagger UI2.

The following subsection presents the literature review on this topic, subsection ‘DEMO Models’
briefly explains the research on DEMO’s models. In subsection ‘Our low-code platform
approach’, our low-code platform approach for RRAM is presented. Finally, we present our
implementation strategy taking into account the given context.

Literature Review and related work

In this subsection we review some of the existing research work related to the topic of REST
API generation, management and documentation.

! https://developers.google.com/blockly

2 https://swagger.io/tools/swagger-ui/



https://www.zotero.org/google-docs/?ENt2oC
https://www.zotero.org/google-docs/?mXZlev
https://swagger.io/tools/swagger-ui/
https://developers.google.com/blockly

Some approaches used code generation. Wang, et al. [3], presents a model-based approach to
automatically generate code for common operations of database access, and then wrap it into
RESTFul APIls, which minimizes efforts and improves flexibility and reusability. However,
generating code may negatively impact the development process, because it requires huge
initial efforts, loss of flexibility, code rigidity and increased technical complexity.

Other approaches suggest following Model-driven Engineering (MDE) [4, 5], an iterative and
incremental software development process. Mora-Segura, et al. [4], presents a solution based
on multi-level modeling to represent domain knowledge. It supports on demand data loading
through domain injectors, which are described through semantic-rich query descriptions.

Hussein, et al. [6], developed a solution called REST API Automatic Generation (RAAG), based
on an integrated framework that abstracts layers for REST APIs, business logic, data access,
and model operations. This solution was developed applying principles, standards, and patterns
focusing on re-usability, maintainability, scalability and performance. A preliminary evaluation of
the RAAG solution showed very promising results in development time, which was significantly
reduced compared to traditional REST API implementations, regardless of whether they are
experienced or non-experienced developers. On average, the time spent with RAAG was
around half the time spent using traditional technologies/frameworks. Also, a survey was
presented to the participants who used the RAAG solution and the opinions on the framework
quality were very positive, especially regarding ease-of-use, maintainability and productivity.

Overeem, M. et al. [7] assessed the application programming interface management maturity of
four major low-code development platforms' (LCDPs). One of the identified challenges in the
evaluated LCDPs regarding APl management was the ability to achieve the goal of making
these reachable by those without formal software engineering, i.e. inexperienced users. The
intrinsic simplification necessary to develop LCDPs and the complexity of software solutions are
in constant confrontation with one another, and a middle term must be met so that users without
software engineering experience can really use these platforms.

Brajesh De [8] states that REST API's adoption success depends on its documentation. It is
important to create APIs with user-friendly interfaces for consumers, so APIl's documentation
ought to make it simple for developers to get a grasp of its features and get started using it
easily.

Although several studies about REST API generation and management have been made, some
of them are based on complex tools or require some kind of experience/training in order to take
advantage of its full potential, some do not support different types of databases or just allow
data retrieval and others focus on code generation [3] which we think is far from ideal. We also
haven't found any approach that includes the generation of the corresponding API
documentation. Nevertheless, judging by the papers that have evaluated the effectiveness of
their solution [3, 5] we can conclude that automatic generation of REST APIs is a viable option
and, if done properly, can turn the process into a much simpler task that can easily be
performed by people with little experience. An equally important insight gained from this
literature review was the importance of an API's documentation, one that should be user-friendly
so that experienced and inexperienced users can understand its characteristics for better
usage.

10


https://www.zotero.org/google-docs/?ua7w7d
https://www.zotero.org/google-docs/?reVdWP
https://www.zotero.org/google-docs/?dAsTrN
https://www.zotero.org/google-docs/?rO7EcA
https://www.zotero.org/google-docs/?AnHNkN
https://www.zotero.org/google-docs/?cRY3Fe
https://www.zotero.org/google-docs/?NmdiHG
https://www.zotero.org/google-docs/?lc4YwV

DEMO Models

In order to situate the innovation of this approach, we will start by briefly introducing DEMO
Models which are the base for our approach of automatic API generation. We will be introducing
a recent evolution of these models presented in [9, 10], which were deemed to be more user
friendly than the traditional approach [11, 12].

Fact Model

The Fact Model (FM) [9] of an organization is a model of its organizational products, in systemic
terms, it is a specification of the state space and the transition space of the production world
[13]. One of the artifacts that compose the FM is the Fact Diagram (FD) which can have two
different views: the Concept and Relationships Diagram (CRD) and the Concept Attribute
Diagram (CAD), explained below.

Regarding the CRD, arrows are used to express relationships, which will always consist, in
practice, of an attribute in one concept whose instances will be a reference to instances of the
other concept. In Figure 2 an example of the CRD is presented, showing the models developed
for the construction licensing process [9]. The dark filled circle attached to a concept in one
connector means that an instance of this concept, in order to exist, depends on an instance of
the concept at the other end of the connector. Considering the example in Figure 2, an instance
of Application Deliverable cannot exist without a reference to an existing instance of Type of
Application Deliverable.

Document has
Document

+
Type of External
Assessment

+
Floor +
Y

N

+

Security deposit

-

£
Enhancement Document
request

A

External
A

T
Application

Deliverable has
Document

Measurement
Drawing

NG 2

+

Type of urban <

project <€ Urban Project A
A
..... Deliverable has i Application
........ Applicati N Deliverable
f—‘ T Deliverable 7 o
Type of liability -
A e ‘—(-1 Liability statement
iype of A =
Deliverable has ’ Type of Application
Type of Application N Deliverable
Deliverable >

Figure 2. Concept and Relationships Diagram

11


https://www.zotero.org/google-docs/?AuzHWv
https://www.zotero.org/google-docs/?pNR1FH
https://www.zotero.org/google-docs/?UNjDiC
https://www.zotero.org/google-docs/?jLrfSu
https://www.zotero.org/google-docs/?e9SvnW

As far as binary fact types are concerned, they are essentially of three types: one-to-one,
many-to-one, and many-to-many, the following standard was adopted for each of these cases
(with examples from a project case from a town council):

1) one-to-one relationships are represented by a connector with two arrow symbols in the
middle, e.g., an urban operation can have one (and only one) permit and a permit is associated
with one (and only one) urban operation (note: this example is not shown in Figure 2 for space
reasons, but was taken from another part of the project case);

2) many-to-one relationships are represented by a connector with only one arrow pointing to the
side “one” of the relationship, e.g., an instance of Application Deliverable has one (and only
one) Type of Application Deliverable. However, the other way around, a Type of Application
Deliverable can be associated with multiple (potentially zero) instances of Application
Deliverable as shown in Figure 2;

3) many-to-many relationships are represented with an intermediate concept depicted with a
darker color; this concept will have many-to-one relationships with the concepts participating in
this many-to-many relationship; both of these relationships will have dependency laws on the
side of this intermediate concept; e.g., an application deliverable can have one or more
documents associated with it; and one document can be associated with one or more
application deliverables as shown in Figure 2.

The specialization/generalization relationship is represented by using a connector with a pointed
line (e.g., the specialization of Application Deliverable into its several more specific concepts). In
practice, this specialization implies that a series of one-to-one relationships exist between the
more specific concepts and the higher order concepts, with a dependency law on the side of
every specific concept.

With regards to the CAD, it can be considered a variation or “expansion” of the CRD presented
previously. In Figure 3 an example of the CAD is presented. With the main concepts and
relationships known, one also needs to identify the attributes that belong to each concept,
considering that at least one transaction in the enterprise’s processes has to create values for it.
Also, the ability to inspect which attributes each concept possesses is highly useful.

12



*Urban Operation = Urban Appraisal Process )

State of the urban
procedure:

- Suspended and
dependent on an
administrative or
judicial order

- Suspended due to
failure to deliver the
urban projects

- Expired

- Ongoing

- Concluded

categ

Deadline for the
delivery of external
assessments and
inquiries

date

Application for the

doc,text
oC1eX! urban operation

Citizen announced his

bool application on-site

ref Urban Operation

Figure 3. Concept Attribute Diagram

In the CAD, a concept is represented by a collapsible box whose expansion discloses its
attributes, one per line. The value type of an attribute is specified to the left of the line, whilst to
the right, the name of the attribute and eventually a list of possible values, usually for categorical
value types.

Action Model

The operation of an organization is addressed in the DEMO methodology through its Action
Model [11]. For each of the transaction coordination facts of the transaction pattern [9], an action
rule can be produced, which specifies the guidelines that the actors must comply with whilst
fulfilling their respective business roles. Actors are still allowed to deviate from expected
behavior and autonomously decide and do the work from their agenda based on their
professional and general knowledge [11].

Action Rule Specification (ARS) languages have evolved through time, starting with a
pseudo-algorithmic language [12] and culminating, in DEMO’s specification language 4.5, in a
definition which adheres to the EBNF, the international standard syntactic meta language,
defined in ISO/IEC 14977 [14]. In it's latest version, an ARS is tripartite: - The event part
specifies which coordination events are responded to by means of a set clauses; - The assess
part, by being based on Habermas’ theory of communicative action, holds a set of validity
claims that must be determined to be true with respect to the rightness, sincerity and truth
conditions of the world; - And the final part, the response, which consists of a mandatory if
clause that specifies what action has to be taken if advancing is considered to be justifiable,
and, otherwise, in an optional else clause, the possible accountable actions that can be taken
by the executing actor if he autonomously deems an exceptional situation to be justifiable [11].

13


https://www.zotero.org/google-docs/?csmyJw
https://www.zotero.org/google-docs/?chgpiJ
https://www.zotero.org/google-docs/?d7bkbW
https://www.zotero.org/google-docs/?duFBA5
https://www.zotero.org/google-docs/?2UtpcG
https://www.zotero.org/google-docs/?r9q9or

Andrade et al [10], proposed an alternative ARS language for the Action Model, also in EBNF,
whilst advocating its suitability for the implementation of an action rule engine and the execution
of action models (and its ARSs) in a live production setting. According to this approach, as in
DEMO'’s latest AM version, the execution of an AR, for a particular transaction state, is triggered
by its corresponding coordination event (e.g. request, promise, etc) and multiple other actions
may follow by means of causal links. However, by also considering expressions, logical
conditions, validations, input forms, and templated-document outputs in the EBNF, which are
constructs closer to an actual information system, it is argued that the alternative ARS language
circumvents the unnecessary faults, complexities and ambiguities introduced by the so-called
“structured english” sentences of DEMOQO’s tripartite claim-based syntax [10].

We take use of this approach to allow concrete actions in the internal system, invoked through
REST API endpoints made available to external systems.

Our low-code platform approach

Our approach for Rapid REST APl Management (RRAM) is based on taking advantage of
already existing DEMO Models in a local system and available external endpoints. Our goal is to
add the functionality of rapid and/or (semi-)automatic REST API generation and handling to the
DBLCP that is currently being developed. This system already has features that are very helpful
to the achievement of this goal, such as action rule specification and complex query modeling
via user-friendly graphical user interfaces. These were developed using Blockly and jQuery
QueryBuilder®, respectively, and are a good basis for the implementation of this new feature.
Alongside the extension of these already implemented components, which will use existing
information, like modeled business facts and attributes, action rules and queries, an additional
component will be created to handle REST API endpoints modeling and specification. The
component to be used, between the ones just mentioned, will depend on the type of operation
the user wishes to perform.

To solve our research problem, we envision four main types of functionalities that should be
developed to allow integration with other systems using REST APIs. These are described in
greater detail in the following subsections as follows: 1. simple CRUD (Create, Read, Update
and Delete) operations on data from the local DBLCP system, 2. query based data provision by
the DBLCP, 3. matching internal action rules and respective local data with data that needs to
be fetched from external systems in their respective endpoints and 4. matching local endpoints
provided to external systems with internal action rules. In this section, we demonstrate and
validate our contribution using the EU-rent case from [15].

An API endpoint’s information, including HTTP method, parameters and response fields, are
inferred from its specification in our system after the needed information has been
selected/provided and is used not only for defining the endpoint itself, but also to automatically
generate APl documentation, for which we will use Swagger UI*.

3 https://querybuilder.js.org/

4 https://swagger.io/tools/swagger-ui/

14


https://www.zotero.org/google-docs/?WDLR7t
https://www.zotero.org/google-docs/?tmHAWO
https://www.zotero.org/google-docs/?zpns1m
https://swagger.io/tools/swagger-ui/
https://querybuilder.js.org/

Simple CRUD Operations

Supporting the generation of APl endpoints to simple CRUD operations consists of creating
endpoints for Create, Read, Update and Delete operations for each of the DBLCP’s internal
concept/entity types that we wish to allow. It is pretty straightforward to generate corresponding
endpoints for these four basic operations, as the only thing that changes in them is the request’s
targeting entity type. They are also regarded as simple because each operation only involves
one concept from the system, lowering its complexity.

An interface will be developed within DBLCP, which will allow the user to choose the information
that will be made available in the API. It will be possible to select all or a subset of an entity
type’s properties/attributes for a particular CRUD operation, for instance. Such selections will be
saved in specific DBLCP database tables and the respective endpoints will be automatically
generated.

Query Based Data Providing

In case a simple CRUD operation isn’'t enough, there is the option of associating a complex
query to a certain endpoint. We have developed a component in DBLCP which allows the
configuration of complex queries using drag and drop actions that works in the form of
specification of queries based on ftriplets of property-operator-value, chosen by the user
selecting the relevant options in a user-friendly graphical interface and without the need of any
programming experience. An example of a query configured using this component is shown in
Figure 4.

15



Included Props Filter Props

Car type:
Specify Fifters

= Step 3: Specify Filters

AND | OR 4 Rue 4 Ruleset

&
x

6]
x

Entity Contracted Contracted  Contracted pick-up  Contracted drop-off Cartype - Contracted pick-up branch - Address  Contracted drop-off Car type - Rental
name  StartDate End Date branch - N: branch - Name Type branch - Address tariff per day
Alameda das Comuridades 004930 6091 1150 beriin-

Rental 1| 2021-01-01 | 2021-01-02 Lisbon Aport Berin Airport | Compact
& Wit St T i Portuguesas, 1700-111 Lisbon aimportde

004930 6091 1150; berlin- |
airport.de

‘Remal 2| 20200505 | 2020-05-06 | Berlin Airport | Berlin Airport | Compact | 0049 30 6091 1150; berlin-airport.de. | 150

Figure 4. Complex query creation component from DBLCP

In the first step of this component we have to select the entity types that our search will be
focused on, with the first selected entity type serving as the Base Table, that is, the entity type
where we will be searching for entity values based on the filters defined ahead. After having
established the entity types that will be included in the search, it is now time for step two, where
the query’s properties are defined. Here, for each entity type selected, we will have two select
boxes to define the Included Properties and the Filter Properties. For each one, the options
shown in the select box are the properties belonging to that entity type. The Included Properties
are the properties that will be shown in the results table, with the selected properties defining
the result table's rows, whereas the Filter Properties are the properties that will be used in the
definition of queries based on friplets of property-operator-value. The properties selected in
these select boxes will then be available for specifying filters in step three, and in case there are
no properties selected, the user can still choose to see the results' table, bearing in mind that
there will be no filters applied to any properties and consequently the results will include every
entity of the Base Table's entity type present in the database. Finally, in step three, we can
define rules and rulesets that will be applied to the main query to be run in the database. We
can look at it as rules being conditions and rulesets being sub-conditions. Whether one or
another is selected, we have to choose its type - and/or. We must also define the property to be
filtered, the query's operator and the value that will restrict the result.

16



As already designed queries have their result properties clearly specified, the respective
configuration of an APl endpoint whose response perfectly matches (part of) the result of the
query is allowed. That is, the list of the properties related to that query can be shown to the user
who then will be able to select the relevant properties that should be part of the response of the
API call.

Matching internal action rules with external endpoints

Our DBLCP also aims to support external calls to third party APIs, allowing the local system to
both receive external information relevant for its functions, as well as actively supplying
information or triggering actions in external systems. With this, a number of challenges arise,
such as information in external systems being most likely structured in a way that needs to be
matched and/or slightly adapted to local information. An internal action rule, after making a
request to an external API, might process the received response and properly update some
properties/instances in the internal system. If we retrieve meteorological information from an
external API, for example, it is very likely that 1) the response we receive has more attributes
than we use/need in our system and 2) the same attributes have different names in each
system.

This type of operation will be supported through the extension of the Action Rules Management
component that implements a user-friendly visual programming editor, through Blockly, for the
specification of an organization’s action rules, with a new action type named ‘external api call’,
as can be seen in Table 2. The Blockly block that will allow us to specify an external get (call
action) in this component will mutate into a block where we can specify an external API
endpoint, with it automatically parsing the possible attributes of the response given by that
endpoint and adding them to an internal list. If the desired action to perform when fetching the
data is to create entities in our system, we can then attach, internally to this block, an entity
input block, where we specify that a particular instance of an entity type will be created -
selecting the entity type in a dropdown menu. Afterwards, blocks that specify the matching that
must be done between the entity’s properties and the API call response’s properties (out of the
internal list mentioned previously), whose value will be assigned to the property mentioned
beforehand, are attached to this entity input block. Blockly can automatically validate if the value
type of the internal property is compatible with the value type of the selected property of the
response and not allow incompatible matches/selections. Similarly, an action can be defined so
that it is possible to update an entity that is already in the system. For this, the user needs to
specify the corresponding entity type and establish an incoming api call’'s parameter for the
stipulation of the entity to be updated. An example of an external get call could be our local
DBLCP requesting, to an external system of a partner car rental company, a list of all available
cars, where the response would include properties like: car type, car model, number of doors, if
it has AC, car engine capacity, etc. and we would only need the first two properties for the
purpose of this call. This external api call action type definition example using DBLCP's blockly
component is shown in Figure 5.

17



B3 T external api call -

=Rl 8 https:/iwww.rentalcompany.com/availableCars

parameter(s) : te t - BN
Rarameter: L Luxury |

entity type input: | entity type
property(ies) : | matching: ent type property: [NELI-d endpoint property:
 Mmatching: ent type property: endpoint property:

Figure 5. External_api_call action type definition example using DBLCP's Blockly component.

This external api call block also includes a slot to specify possible parameters for the call. A
similar reasoning applies to the parameters as the one applied to the response properties.
Blockly would automatically parse the possible parameters of the external endpoint, and include
them in an internal list. Then one could select a certain parameter (e.g. a particular Car Type) to
be sent in the call and assign a value to the parameter: either a constant, the value of some
property in the scope of the process running such a call, or a free value. Following the example
above in Figure 5, after executing the external api call we would receive a response with a list of
cars, only of the particular Luxury Car Type, in order to add them to our system for later use
(e.g., showing to a potential client in a user output). While performing the action of creating
entities in our system, endpoint properties would automatically be matched with the
corresponding internal properties, as specified in the Blockly action.

The cases of external post, put and delete api calls are a simplification of the previous case,
where only the parameters apply.

Matching local endpoints with internal action rules

Another type of operation supported through the extension of the Action Rules Management
component is the creation of endpoints that can lead to the execution of internal action rules.
This association of an endpoint with an internal action rule will be done through the introduction
of the property: action rule execution type which doesn’t currently exist in the DBLCP. It will have
as possible values: native execution, which is the normal execution of action rules in the local
system through user interaction in the prototype’s dashboard; and local endpoint call execution,
that is, the execution of local actions invoked by an external system’s call to a locally configured
api endpoint, as can be seen in Table 1's EBNF.

In order to accomplish this, we must first create a new action rule (with local endpoint call type)
that will be responsible for processing the execution of the desired internal action rule, as well
as defining the required parameters and a response type/format for it.

MiColEC Project - Specification of the Component for Automatic Generation of APls for
Integration with Logistics Platforms

18



when
local endpoint :
parameter(s) - parameter
enttype:
property:

mandatory: [l

value type: fext
| Leei

response :
[esponse set
entity type
property(ies) - set property. ent type property: [ETTRA
_setpropeny. enttype property.
—

@) 127N assign expression - | response property (S LG | = |, value value fype: [N RS ST
(2] acﬁon | response property, [EEVVEIEWNE = | query Cars Available - _

Car — Gartype: | property,
e
ent type:
property: [ERT00

value type: text

Figure 6. Definition example of an action rule with execution type ‘Local endpoint call’ using DBLCP's
Blockly component.

This definition of a 'local endpoint call' execution type action rule through DBLCP's Blockly
component can be seen in Figure 6. For this example, let’s look at the opposite of the one given
in Figure 5. In this case, the goal is to enable an external system of a partner car rental
company requesting a list of all available cars in our system. Thus, an action rule, with the 'local
endpoint call' execution type has to be defined for the transaction type 'Supply available car lists'
in order to create and link the endpoint that will allow the system to accept this kind of requests.
In this action rule, an optional parameter is defined so that incoming requests for available cars
can explicitly define that only cars of that type should be checked for availability. The request’s
response must also be specified, being that one can include solo properties or a set of them in
it, with them being assigned by the system in the actions section of the action rule.

Then, based on the configurations specified in the action rule, the standard information for
making the endpoint available can be automatically deducted: HTTP method, URI, parameters
and response.

Extending the Action Meta Model's EBNF grammar

Another contribution of this paper is the proposition of extending the current DBLCP’s action
rules’ EBNF grammar. The changes introduced in this subsection are directly related to
subsections ‘Matching internal action rules with external endpoints’ and ‘Matching local
endpoints with internal action rules’, as the api call’s operation types specified in them are the
ones that use action rule specification to achieve its goal.

MiColEC Project - Specification of the Component for Automatic Generation of APIls for
Integration with Logistics Platforms

19



The current grammar foresees the action of calling external APIls, with the action type
‘external call’, but didn’t detail it. By the extension observed with subsection ‘Matching internal
action rules with external endpoints’., a proposition for its definition is presented in Table 2, and
in Table 1 is the introduction and respective definition of an execution type to action rules,
influenced by subsection ‘Matching local endpoints with internal action rules”s new operation.

In the tables displayed below, only new/updated concepts on DBLCP’s action rule’s EBNF
grammar are specified, and soon after explained, as presenting the entire grammar definition
would prove to be space-intensive and wouldn’t add much value to the topic in discussion.
Rows that have updated definitions of already existing concepts have those respective updates
in bold lettering, and every other row is a new entry in the EBNF grammar.

Table 1. Action rule EBNF table with added/updated concept specification for internal api calls.

when WHEN transaction_type IS|HAS-BEEN
transaction_state execution_type { action
} -

execution_type NATIVE_EXECUTION

local_endpoint_call

local_endpoint_call local_endpoint call_action {
local_endpoint_parameter } - {
response_property | response_set } -

local_endpoint STRING

local_endpoint_paramet | property [ MANDATORY ]

er
response_property value_type STRING
response_set STRING entity_type { property } -

An action rule occurs in the context of a transaction type, among those specified in the system,
in the activation of a particular transaction state. Our new proposition extends this definition of

20



action rule to include an execution type that is divided into: native execution, that is,or the
normal execution of action rules in the system through user interaction in the prototype’s
dashboard; and local endpoint call execution -, that is, the execution through an external
system’s api call of the defined system endpoint, as stated before. When defining an action rule
with the ‘local endpoint call’ execution type, as is illustrated in Figure 6, one must specify the
local endpoint with which external systems will interact, followed by the api call’s parameters -
mandatory or not system properties. Finally, one needs to define the call's response, with the
chance to explicit solo properties, by defining their name and value type, and/or a set of them,
by also defining its name firstly, but then choosing an entity type from the system and selecting
properties from it.

Table 2. Action rule EBNF table with added/updated concept specification for external api calls.

action causal_link |  assign_expression |
user_input | edit_entity_instance |
user output | produce doc | if |

external_api_call

external_api_call external_endpoint_url call_action {
api_call_parameter } api_call_entity_input

call_action CREATE | READ | UPDATE | DELETE

external_endpoint_url STRING

api_call_parameter external_endpoint_parameter =7 (
property | constant | value )

external_endpoint_para | STRING

meter
api_call_entity_type entity _type { matching_property } -
matching_property MATCHING property

external_endpoint_property

21



external_endpoint_prop | STRING
erty

An action rule can lead to the execution of one or more actions of a specific type. For example,
an action may imply a causal link - changing the state of any transaction - or it may simply
assign a value to a property in the system. We can have a sequence of one or more actions. For
each action, one needs to specify the action type that will imply what concrete
operations/instructions will be executed by the action engine and then define its parameters,
specific to the corresponding action type, required for its execution. The set of available actions
in this grammar is also extended by our approach, with the specification of the ‘external api call’
concept. When defining an action of the ‘external api call’ type, as can be seen in Figure 5, one
starts by declaring the external api's endpoint url that is to be accessed. Then, the call action,
between those supplied, is selected, followed by the definition of parameters in an explicit
manner to be included in this request. These parameters can be assigned a free value or a
system’s constant or property value that is evaluated at run-time. Finally, if the desired action to
perform when fetching data, or when the call action is read, is to create entities in our system,
we must then specify the entities’ type and the linkage that must be done between the entities'
properties and the API call response’s properties.

Automatic APl documentation generation

As far as REST APIs are concerned, the existence of a corresponding documentation is equally
important for the development teams as well as end consumers of the API, so they can visualize
and interact with its resources without having any of the implementation logic in place.
Therefore, our proposition of RRAM includes the automatic generation of the API
dDocumentation, based on the API properties specified with our low-code approach. For that,
we will be using Swagger Ul, an open source tool which generates a web page that documents
the API, following the OpenAPI Specification (OAS, formerly known as Swagger Specification).
This documentation of the API is simple, user friendly and is also easy to change/update.

The generation of the documentation with Swagger Ul is based around the use of annotations
for defining the information that shows up in the web page. Most of that information, such as
HTTP method, parameters, response fields and so on, can be deduced based on the
specifications made with the components mentioned in the previous subsections. Human
readable information, like names and descriptions, will already be defined when complex
queries and/or specific action rules are being created, or can be automatically generated based
on the mentioned specifications/names. Without any implementation logic in place, Swagger Ul
enables anyone, including development teams and end users, to visualize and interact with an
API's resources. Its latest release enables users to use the Swagger Ul to visualize and
automatically generate documentation of an API defined in OAS 3.0.

22



Component Implementation strategy

We intend to leverage on the current experience we have with our DBLCP, to use it to directly
implement parts of the features and requirements elicited as necessary for the backend
component of our platform. Eventually the majority of them, if feasible. We foresee two
scenarios:

1. Using DBLCP model editor to design the services and format of data so that we can
generate, both the API specifications and (parts of) the backend code that will be
needed to be programmed in order to make the necessary API’s available and
functional.

2. If time and encountered complexity allows, implementing the previous step and,
additionally, using the low-code features of DBLCP to implement the needed business
logic of the backend so that the needed programming is reduced to a minimum and the
APIs can run on top of the logic implemented in a low-code fashion

23



Risks and mitigation

Risk Mitigation strategy
Unexpected technical | Extensive technological mapping and testing; Early
limitations proof-of-concept;

Limitations in the integration | Modularized architecture that allows proxy or translator
with legacy systems components; Non-intrusive design where integration is done
considering legacy systems as a black-box;

24



Bibliography

1.

10.

1.

12.

13.

14.

15.

Andrade, M., Aveiro, D., Pinto, D.. DEMO based Dynamic Information System Modeller
and Executer: In: Proceedings of the 10th International Joint Conference on Knowledge
Discovery, Knowledge Engineering and Knowledge Management. pp. 383-390.
SCITEPRESS - Science and Technology Publications, Seville, Spain (2018)

Introduction to Blockly | Google Developers,
https://developers.google.com/blockly/guides/overview?hl=pt

Wang, B., Rosenberg, D., Boehm, B.: Rapid realization of executable domain models via
automatic code generation. Presented at the September 1 (2017)

Mora-Segura, A., Sanchez Cuadrado, J., Lara, J.: ODaaS: Towards the Model-Driven
Engineering of Open Data Applications as Data Services. Presented at the Proceedings -
IEEE International Enterprise Distributed Object Computing Workshop, EDOCW
September 1 (2014)

Goncgalves, R., Azevedo, |.: RESTful Web Services Development With a Model-Driven
Engineering Approach. Presented at the January 1 (2019)

Hussein, S., Zein, S., Salleh, N.: REST API Auto Generation: A Model-Based Approach.
Presented at the September 17 (2020)

Overeem, M., Jansen, S., Mathijssen, M.: APl Management Maturity of Low-Code
Development Platforms. In: Augusto, A., Gill, A., Nurcan, S., Reinhartz-Berger, |., Schmidt,
R., and Zdravkovic, J. (eds.) Enterprise, Business-Process and Information Systems
Modeling. pp. 380-394. Springer International Publishing, Cham (2021)

De, B.: APl Documentation. In: De, B. (ed.) APl Management: An Architect’s Guide to
Developing and Managing APIs for Your Organization. pp. 59—-80. Apress, Berkeley, CA
(2017)

Gouveia, B., Aveiro, D., Pacheco, D., Pinto, D., Gouveia, D.: Fact Model in DEMO - Urban
Law Case and Proposal of Representation Improvements. Presented at the April 14 (2021)
Andrade, M., Aveiro, D., Pinto, D.: Bridging Ontology and Implementation with a New
DEMO Action Meta-model and Engine. Presented at the January 3 (2020)

Pinto, D., Aveiro, D., Pacheco, D., Gouveia, B., Gouveia, D.: Validation of DEMO’s
Conciseness Quality and Proposal of Improvements to the Process Model. Presented at
the April 14 (2021)

Pacheco, D., Aveiro, D., Pinto, D., Gouveia, B.: Towards the X-Theory: An Evaluation of
the Perceived Quality and Functionality of DEMO’s Process Model. (2022)

Dietz, J., Mulder, H.: Enterprise Ontology: A Human-Centric Approach to Understanding
the Essence of Organisation. (2020)

Skotnica, M., Pergl, R.: Das Contract - A Visual Domain Specific Language for Modeling
Blockchain Smart Contracts. Presented at the January 3 (2020)

Bollen, P.: SBVR: A Fact-Oriented OMG Standard. In: Meersman, R., Tari, Z., and Herrero,
P. (eds.) On the Move to Meaningful Internet Systems: OTM 2008 Workshops. pp.
718-727. Springer, Berlin, Heidelberg (2008)

25


https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr
https://www.zotero.org/google-docs/?2rTpkr

