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Introduction
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= Background motivation for optical clock development — e.g. the planned optical
redefinition of the second

= Development of optical clocks and cavities for space

= Qutline of the major sub-systems of an optical clock, namely the physics
package, high finesse optical cavity and frequency comb

= |ntroduction to our 8Sr* trapped ion optical clock for future space deployment
= Compact optical cavities for space, particularly with application to clocks

Funding: @ esa



Background
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First Cs atomic clock developed at NPL in 1955 (upper
right)
Caesium (~9.2 GHz) the definition of the second

Optical frequency standards more reproducible and
stable than Cs microwave (lower, right). Both neutral
(lattice) and ion clocks being developed worldwide

BIPM maintains a list of recommended optical

secondary representations of the second using ions and .
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Progress of atomic clocks over time

atoms (one of these is a transition in 88Sr*)
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Caesium expected to be replaced by an optical
definition around 2030

Talk will focus on NPL work on 8Sr* with application to

Fractional uncertainty
=
o

future space deployment and our associated optical

cavity development for short-term stability
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Why cavities & optical clocks in space? NPLE
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= Navigation — a future GNSS using optical clocks and
cubic cavity (will discuss later)

= LISA (gravity wave detection; e.g. see Greve et al,
“Space based lasers for gravitational wave detection”,
(Laser Applications Conference, Vienna, Sept. 2019);
Stacey et al, “Laser frequency stabilisation for the LISA
mission using a cubic cavity” (ICSO 2022)

= Fundamental physics (e.g. Lorentz invariance violations;
see Sanjuan et al, Optics Express, 27, 36206 (2019))

= Next Generation Gravity Missions (e.g. see Dahl et al,
“High Stability Laser for Interferometric Earth Gravity
Measurements” SPIE Proc 10562, (ICSO 2016) 105620J
(2017)

© ESA




Major sub-systems of an optical clock NPLIE

Single cold
trapped ion
(atomic reference)

|

191Hg+, 888r+’ 171Yb+’
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Ultra-stable cavity
(“optical flywheel”,
providing short-term
frequency stability)

Femtosecond comb (counter,
compares optical frequencies or
outputs an RF/ microwave signal)



Frequency combs and intercomparisons NPLE
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Trapped ion probe laser
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International intercomparisons via
satellite or fibre links (right)




lon traps — an introduction
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Positively

— DC/RF electrodes |
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Nisbet-Jones et al, “A single-ion trap with

minimized ion—environment interactions”, Appl.

Phys. B 122, 57 (2016)

charged ion

A static potential cannot trap ions in all
three directions. A mechanical
analogue is the rotating saddle trap.



88Sr+ — gverview
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Cooling and clear-out lasers for 88Sr*
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422-nm tunable

low-drift etalon APD ety » 844 nm monitor via
; fibre to wavemeter
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Probe laser system
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Micromotion observation and
minimisation
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= Frequency

Doppler
shift

o Micromotion is motion at the trap RF drive
frequency

o Micromotion detection (above) and
minimisation (right)
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For Sr*, a 14.4 MHz drive
frequency Is used to cancel
Stark & Doppler shifts due to the
micromotion.

Fluorescence signal [rel.]

rf Period



Monitoring of the ion heating rate NPLEl QMI] &
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> 10
E From Nisbet-Jones et al, “A single-ion
£ trap with minimized ion—environment
E interactions”, Appl. Phys. B 122, 57
g (2016)
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Rabi oscillation decay on the E3 transition for
different post-cooling delay times
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Electrode temperature and
blackbody shift evaluation

1
Avppr(T) = — 2h Aage

CMI co-authors:
M.Dolezal & P. Balling
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Effective temperature rise at the ion’s position of T(ion) =
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2 4
794 V
m 300K
23.0°C
22.0°C
21.0°C
20.0 °C
Nisbet-Jones Appl.Phys.B 122 57 (2016)
0.14 = 0.14 K

For 88Sr*, this reduces the BB relative frequency shiftto 1 x 10-18



Virtual shake and shock modelling
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= Defeaturing (a) upper left and meshing (b) of the trap electrode structure prior to
modelling of the response to virtual shake and shock tests

= Maximum equivalent stress (a) and maximum deflection (b) for the ion trap key
components (upper right)

A. Spampinato et al, “Progress towards development of a trapped strontium-ion space optical
clock”, Proc SPIE, 12335, 1233502 (2023)



Electromagnetic modelling of the
trapping potential
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= Reference system for the ion trap (upper left) during the electrostatic study (a)
and electric potential distribution (b)

* The key parameters for the trap geometry are shown upper right

= An RF voltage on the inner electrodes creates a harmonic pseudo-potential



Modelling of thermal response of
different oven designs
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= Oven configurations modelled for electro-thermal FE analysis: a) thick wires
(1 mm in diameter), b) thin wires (0.1 mm in diameter), ¢) both thick and thin
wires



Fluorescence detection and input beam NPLE
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One window is MgF, — transparent to 8 um; for thermal imaging & Stark
shift measurements in the IR.

For Sr*, photonic crystal fibre will deliver 422 nm, 1092 nm, 1033 nm
and 674 nm. A PM fibre will deliver 422 nm & 461 nm, 405 nm (photo-

lonisation)




Compact optical cavities for space
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Cylindrical cavities (far left) have a high
sensitivity to acceleration. The lowest
acceleration sensitivity comes from a
symmetric cubic geometry with tetrahedral
supports (right). This mounting can be
adapted to withstand forces at launch

OPTICS LETTERS / Vol. 56, No. 18 / September 15, 2011

Force-insensitive optical cavity = Cubic cavity work is a
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Vibration insensitivity
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e 4 = Webster & Gill “Force-insensitive optical
o 2 // cavity”, Opt Lett, 36, 3572 (2011)
L // = Vibration insensitivity comes from the
5 0 : symmetry of the cubic spacer and the
= =1 symmetric (tetrahedral) supporting structure.
g i - The mirrors result in asymmetry but the
T o4l | | | resulting sensitivity to vibration can be
8¢ B@  WR 49 minimised by choosing the correct cut-out

Depth of cut at vertices / mm

depth

» A dual-axis axis cavity has been developed for
clock applications, see Hill et al, “Dual-axis
cubic cavity for drift-compensated multi-
wavelength laser stabilisation”, Opt Express,
29, 36758 (2021); next slides




Clock control unit

= |. R HIll, R. J. Hendricks, S. Donnellan, P. Gaynor, B. Allen, G. P. Barwood, and
P. Gill, “Dual-axis cubic cavity for drift-compensated multi-wavelength laser
stabilisation”, Opt Express, 29, 36758 (2021)

= One bore to pre-stabilise the clock laser frequency and the other to stabilise the
cooling, clear-out and photo-ionisation lasers
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Clock control unit
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= For space, the cavity mounting needs to be sufficiently robust for space
deployment
» TRL6 demonstrated (R. Sutterlin et al: "Towards space deployable laser

stabilisation systems based on 5-cm vibration insensitive cubic cavities," in Joint
Conference of the European Frequency and Time Forum and IEEE International

Frequency Control Symposium, 2021.)

Compact 5 cm cubic cavity

Patented NPL technology

Low vibration insensitivity:
<2.1x10" perg

Cubic cavity stabilised to 698 nm Sr lattice clock laser
Auxiliary lasers stabilised to cubic cavity

* 461 nm primary cooling (frequency-doubled 922 nm)
* 689 nm (2"9-stage cooling to uK temperatures

* 813 nm lattice laser

* 679 nm, 707 nm repumper lasers




Planned cooling and clock lasers
iIncluding dual-axis cubic cavity
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Clock control unit — multiplexing light
Into the cavity and performance
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Strontium ion clock
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Conclusions and summary
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= Requirement for optical clocks and cavities in space;
future optical redefinition of the second

= Major sub-systems of an optical clock are the physics
package (in this case the ion trap), high finesse optical
cavity and frequency comb

= |Introduction to our 88Sr* trapped ion optical clock for
future space deployment

= Compact optical cavities for space, particularly with
application to clock development

= Major frequency test and evaluation facilities currently
being set up in our new advanced gquantum metrology
building (right)




