Limits for quantum communications: From fibres to free space

EPSRC Engineering and Physical Sciences Research Council QUANTUM COMMUNICATIONS HUB

PT-UK Workshop on Quantum Technologies in Space (March 31, 2023)

nodeQ and UoY

nodeQ

Software

- Design, optimization and control of quantum-safe networks (QKD and/or PQC)
- Fast QKD data processing (universal, both DV and CV)

Theory

- Optimal performance for quantum-safe comms (fibre, ground free-space, sat)
- Protocols (CV-QKD, MDI, CV-MDI, etc.)

□ Fundamental limits of quantum comms

Optimal rates for quantum repeaters

□ Free-space quantum comms: Limits & CV-QKD rates

□ Satellite quantum comms with CVs

Fundamental limits of quantum communications

Consider a lossy communication channel with transmissivity η

Channel can be used for various tasks:

- transmitting qubits
- sharing entanglement bits (ebits)
- generating secret key bits (QKD)

What are the maximum rates achievable over the channel? (qubits/ebits/secret bits per channel use)

Fundamental limits of quantum communications

Consider a lossy communication channel with transmissivity η

[Pirandola, Laurenza, Ottaviani, Banchi, Nature Comm 8, 15043 (2017)]

PLOB bound is the fundamental benchmark for quantum communications:

- Provides the ultimate performance of quantum communication protocols over a quantum channel, in the absence of repeaters (repeaterless bound)
- > Establishes if a quantum repeater effectively *repeats*

QKD limits before PLOB

[Pirandola et al., Advances in Quantum Cryptography, AOP 12, 1012-1236 (2020)]

QKD limits before PLOB

[Pirandola et al., Advances in Quantum Cryptography, AOP 12, 1012-1236 (2020)]

Repeater-assisted protocols introduced after PLOB

[Pirandola et al., Advances in Quantum Cryptography, AOP 12, 1012-1236 (2020)]

Repeater-assisted protocols introduced after PLOB

[Pirandola et al., Advances in Quantum Cryptography, AOP 12, 1012-1236 (2020)]

Limits of repeater-assisted quantum communications

Next question: what are the optimal rates achievable by repeater-assisted protocols?

Limits of repeater-assisted quantum communications

Consider a chain of M ideal repeaters between Alice and Bob

Alice
$$\mathbf{a} \xrightarrow{\eta_0} \mathbf{r}_1 \xrightarrow{\eta_1} \mathbf{r}_2 \cdots \mathbf{r}_N \xrightarrow{\eta_M} \mathbf{b}$$
 Bob

The capacity of the chain is given by the min transmissivity

$$K = -\log_2(1 - \min_i \{\eta_i\})$$

Techniques: -Lower bound (simple, by composition) -Upper bound (difficult, via REE and teleportation simulation)

[Pirandola, End-to-end capacities of a quantum communication network, Communications Physics 2, 51 (2019)]

Limits of repeater-assisted quantum communications

[Pirandola et al., Advances in Quantum Cryptography, AOP 12, 1012-1236 (2020)]

Quantum network architecture

- Free-space diffraction
- Atmospheric extinction (Beer-Lambert model)
- Beam deflection and pointing errors
- Weak turbulence (beam spreading and wandering; H-V model)
- Background thermal noise (sky brightness)
- Setup imperfections (<1 efficiency, electronic noise etc.)

Remarkably, practical rates for CV-QKD are not far from the free-space limit

- > We derive a general formula for the secret key rate accounting for:
 - Finite-size effects (finite number of uses, parameter estimation, finite digitalization)
 - Composable security (error correction, privacy amplification etc.. each associated with an epsilon error)
 - Free space fading (data undergoes suitable de-fading procedure by using pilots and post-selection)

Remarkably, practical rates for CV-QKD are not far from the free-space limit

- We derive a general formula for the secret key rate accounting for:
 - Finite-size effects (finite number of uses, parameter estimation, finite digitalization)
 - Composable security (error correction, privacy amplification etc.. each associated with an epsilon error)
 - Free space fading (data undergoes suitable de-fading procedure by using pilots and post-selection)

We compare the practical CV-QKD performance with the ultimate limits: High-rate free-space CV-QKD is feasible with current tech!

[Pirandola, Limits and security of free-space quantum communications, Physical Review Research 3, 013279 (2021)]

Satellite quantum communications with CVs

Results can be extended to satellite quantum communications

Satellite quantum communications with CVs

High-rate CV-QKD with satellite feasible for all configurations in the LEO/sub-LEO region (but with different requirements)

[Pirandola, Satellite Quantum Communications: Fundamental Bounds and Practical Security, Phys. Rev. Res. 3, 023130 (2021)]

Satellite versus repeater chains

Consider a sun-synchronous satellite (almost circular orbit) which crosses the zenith points of two remote ground stations

NightDayDownlink (530 km) $\approx 6.13 \times 10^7$ $\approx 6.08 \times 10^7$ Uplink (103 km) $\approx 1.69 \times 10^7$ $\approx 1.09 \times 10^7$

Daily rate of secret bits that the satellite can distribute between the two stations

*Clock 10 MHz

[Pirandola, Satellite Quantum Communications: Fundamental Bounds and Practical Security, Phys. Rev. Res. 3, 023130 (2021)]

Satellite versus repeater chains

Consider a sun-synchronous satellite (almost circular orbit) which crosses the zenith points of two remote ground stations

[Pirandola, Satellite Quantum Communications: Fundamental Bounds and Practical Security, Phys. Rev. Res. 3, 023130 (2021)] [Harney and Pirandola, Analytical Methods for High-Rate Global Quantum Networks, PRX Quantum 3, 010349 (2022)]

□ High rates can be achieved with CV-QKD technology (cheaper than DV)

Best case is downlink from LEO (day or night)

□ Sat-based QKD can be more viable than fibre-connected repeater chains

□ Important bottleneck for sats: QKD data processing not so fast for orbital dynamics

Good news: <u>QKD data processing is now fast for both DVs and CVs (nodeQ's software</u>)

Thanks for your attention!

Additional Slides

Satellite versus ground network

[Harney and Pirandola, Analytical Methods for High-Rate Global Quantum Networks, PRX Quantum 3, 010349 (2022)]

Remarkably, practical rates for CV-QKD are not far from the free-space limit

- We derive a general formula for the secret key rate accounting for:
 - Finite-size effects (finite number of uses, parameter estimation, finite digitalization)
 - Composable security (error correction, privacy amplification etc.. each associated with an epsilon error)
 - Free space fading (data undergoes suitable de-fading procedure by using pilots and post-selection)

> We consider practical parameters and physical conditions:

Physical parameter	Symbol	Value	Protocol parameter	Symbol	Collective attacks	General attack
Beam curvature	R_0	∞	Total nulses	N	5×10^{7}	5×10^{7}
Wavelength	λ	800 nm	Dilat gulass	14	$0.1 \dots N$	$0.1 \times N$
Beam spot size	w_0	5 cm	Phot pulses	$m_{\rm P}$	$0.1 \times N$	$0.1 \times N$
Receiver aperture	a_R	5 cm	PE signals	m	$0.1 \times N$	$0.1 \times N$
Receiver field of view	$\Omega_{ m fov}$	10^{-10} sr	Energy tests	$f_{\rm et}$	_	0.2
Homodyne filter	$\Delta\lambda$	0.1 pm	KG signals	n	$0.8 \times N$	$\simeq 3.33 \times 10^7$
Detector efficiency	$\eta_{ m eff}$	0.5	Digitalization	d	25	25
Detector bandwidth	W	100 MHz	Digitalization	0	0.08	0.08
Noise equivalent power	NEP	$6 \text{ pW}/\sqrt{\text{Hz}}$	Rec. efficiency	P	0.98	0.98
Linewidth	$l_{\mathbf{W}}$	1.6 KHz	EC success prob	$p_{ m ec}$	0.9	0.5
LO power	$P_{\rm LO}$	100 mW	Epsilons	$\varepsilon_{h,s,}$	$2^{-33} \simeq 10^{-10}$	10^{-43}
Clock	\overline{C}	5 MHz	Confidence	w	$\simeq 6.34$	$\simeq 14.07$
Pulse duration	Δt , $\Delta t_{\rm LO}$	10 ns	Security	$\varepsilon, \varepsilon'$	$\simeq 5.6 \times 10^{-10}$	$\leq 1.3 \times 10^{-9}$
Altitude	h	30 m	Scouldy	0,0		~ 10 (TLO)
Structure constant (day)	C_n^2	$2.06 \times 10^{-14} \text{ m}^{-2/3}$	Modulation	μ	variable	20(1LO)
Background noise (day, $\Delta \lambda = 0.1 \text{ pm}$)	\bar{n}_B	4.75×10^{-7}	Threshold	$f_{ m th}$	variable	0.84 (LLO)

Satellite quantum communications with CVs

Physical parameter	Symbol	Value	Protocol	Symbol	Collecti
Beam curvature	R_0	∞	parameter	29111001	attacks
Wavelength	λ	800 nm	Total pulses	N	10^{8}
	w ₀	20 cm (setup 1)	Pilot pulses	$m_{ m PL}$	$0.01 \times \Lambda$
Boam spot sizo		$\frac{20 \text{ cm} (\text{setup 1})}{40 \text{ cm} (\text{setup 2})}$	PE signals	m	0.1 imes N
Deam spot size		40 cm (setup 2)	Energy tests	$f_{ m et}$	-
		60 cm (setup 3)	KG signals	n	$0.89 \times \Lambda$
	a_R	40 cm (setup 1)	Digitalization	d	2^{5}
Receiver aperture		1 m (setup 2)	Rec. efficiency	β	0.96
		2 m (setup 3)	EC success prob	$p_{ m ec}$	0.9
Receiver field of view	$\Omega_{\rm fov}$	$10^{-10} { m sr}$	Epsilons	$\varepsilon_{\rm h,s,\ldots}$	$2^{-33} \simeq 1$
Homodyne filter	$\Delta\lambda$	0.1 pm	Confidence	w	$\simeq 6.34$
Detector shot-noise	$\nu_{ m det}$	2 (heterodyne)	Security	$\varepsilon, \varepsilon'$	$\simeq 5.6 \times$
Detector efficiency	$\eta_{ m eff}$	0.4	Threshold	μ	optimize
Detector bandwidth	W	100 MHz	Threshold	Jth	optimize
Noise equivalent power	NEP	$6 \text{ pW}/\sqrt{\text{Hz}}$			
Linewidth	$l_{ m W}$	1.6 KHz			
LO power	$P_{\rm LO}$	100 mW			
Clock	C	10 MHz			
Pulse duration	$\Delta t, \Delta t_{\rm LO}$	10 ns			
Extinction (at 1 rad)	$\eta_{ m atm}$	$\simeq 0.94$			
Pointing error	$\sigma_{ m P}^2$	$\simeq (10^{-6}z)^2 \ (1 \ \mu rad)$			
Structure constant	C_n^2	night/day H-V model			
Turbulence parameters	$w_{ m st},\sigma_{ m TB}^2$	Appendix C			
Background noise	\bar{n}_B	Eqs. (42), (43)			

Collective

 $0.89 \times N$

 $2^{-33} \simeq 10^{-10}$

 $\simeq 5.6 \times 10^{-10}$

optimized

optimized

 10^{8} $0.01 \times N$ General

attacks 10^{8}

0.01 imes N

 $0.1 \times N$

 $\simeq 7.4 \times 10^7$

0.2

 2^5

0.96

 10^{-43}

0.75

 $\simeq 14.07$

 $\leq 2.6 \times 10^{-10}$

0.1

[Pirandola, Satellite Quantum Communications: Fundamental Bounds and Practical Security, Phys. Rev. Res. 3, 023130 (2021)]