

QUANTUM TECHNOLOGIES

Quantum Photonics in EMN-Q

Christopher Chunnilall (NPL)

Quantum Metrology: the present and the future

21st November 2022

About me

In EMN-Q:

Vice-Chair, Section Coordinator "Quantum Photonics"

Supported by two vice-coordinators: Mikael Lassen (DFM) [Quantum Sensing & Metrology] Marek Smid (CMI)

Stakeholders in EMN-Q

Stakeholder involvement is central to EMN-Q!

EMN-Q counts 284 stakeholders

in total, for all three pillars

- Industrial company
- Research organisation
- Academic institute
- Quantum Flagship body/project
- Other type of organisation (e.g. standardisation body, other Consortium)

105 stakeholders in "Quantum Photonics"(87 still unassigned)

46 stakeholders are commercial companies

Industry Stakeholders in EMN-Q "Qu-Photonics"

Single-photon sources Sparrow Quantum Quandela

Detectors

ID Quantique Laser Components MPD Redwave Single Quantum Femto etc ...

Lasers

M-Squared NKT PicoQuant Toptica etc...

Single-photon LIDAR

QLM Technology

Q Comms – vendors, developers ID Quantique Toshiba Europe Huawei Technologies Duesseldorf InfiniQuant KETS Nu Quantum etc ...

Q Comms - providers ArQit BT Italtel DT Telefonica etc ...

Underpinning

PicoQuant, Swabian, FastCom (timetaggers) Microgate (adaptive optics) Bay Photonics (optical packaging) Element Six, Qnami (materials diamond) Attocube, Entropy, Oxford Instruments (cryogenics) Covesion (non-linear materials) Fabrication facilities etc ...

Large industry (potential users)

Airbus (all) Bosch (sensing and metrology) Thales (sensing and metrology) etc ...

Quantum Photonics Roadmaps

Two sub-fields:

 \rightarrow two roadmaps in the Strategic Research Agenda (SRA) of EMN-Q:

Quantum Sensing & Metrology

		Quantum Communications involves the generation and use of quantum states and resources for communication protocols that generate better or radically new applications and increased cybersecurity			
	Triggers and needs	1.5 Development and T&E for quantum internet 1.4 Delivery and assurance of multiple quantum services 1.3 Assurance for QKD networks – terrestrial and free-space – and links between them 1.2 Certification of quantum hardware – QRNGs, QKD, etc	Ex (ir go pr	ternal idustry, ivt.) oducts	
		1.1 Certification framework: Assurance procedures and testing procedures (SDOs)	ar	id plans	
	Targets	2.3 'In-service' testing 2.2 Measurement services 2.1 Standardised, traceable, measurement and data analysis procedures	Addr triggen need	ess ers and ls	
		Delivery of 3.4 Testing of quantum hardware in the field			
Metrology	Metrological	test capability 3.3 Physical testing of quantum hardware – QRNGs, QKD, quantum repeaters Metrology 3.2 Comparisons, equivalence, terminology			
		developments 3.1 Metrology of key enabling quantum components – macro, fibre, on-chip		needed	
	Experimental realisations	4.3 Bespoke instrumentation and robust test procedures 4.2 Advanced sources and detectors; better standard artefacts; absolute SI		to meet targets	
		4.1 Quantum metrics and measurement methods			
	Enabling Science and	5.4 Advances in theory, communication protocols, security analysis)evelop	o <mark>m</mark> ent	
		5.3 Advanced technologies: quantum photonic integrated circuits, module synchronisation, quantum memory, etc.	ed by c	others,	
	Technlogies	5.2 Photon detectors: nPkD, PkD, multi-pixel, nomodyne, neterodyne N 5.1 Photon sources: single-, entangled-, and few-photon sources C	iviis ai ontrib	so ute	
	•	2021 2024	2	.031	

Quantum Communications

Photonic Quantum Sensing and Metrology exploits quantum phenomena such as coherence and entanglement to Q develop new modes of measurements, sensing, and imaging that offer unprecedented levels of precision, and QUANTUM TECHNOLOGIES resolution. 5.2 Certified QT performance External (industry, 5.1 Enhanced sensors available commercially Triggers The targets and needs are related to industry and economy address the support of new developments and govt.) and needs products in the field of photonic QT. Support by metrology is perceived to be fundamental for the take up products and of the quantum technologies market. plans 4.3 Standardised test procedures Address Targets 4.2 Measurement services to demonstrate quantum enhanced measurements triggers and needs 4.1 Traceability of operational methods and systems based on calibration, certification, etc 3.3 Testing quantum hardware in real-life scenarios Metrological 3.2 Comparisons and validation of characterization techniques applications 3.1 Metrology of key enabling technologies This is needed to 2.4 Characterisation of sensor properties meet targets 2.3 Robust test methods and instrumentation Experimenta l realisations 2.2 Development of appropriate performance metrics 2.1 Use cases identified/proof of concept 1.5: Detection schemes ... **Development** Enabling 1.4: Optomechanical sensors led by others, 1.3: All-optical set-ups ... Science and NMIs also Technologies 1.2: Artificial atom-like systems for sensing and metrology contribute 1.1: Basic technology: Lasers, detectors, optics, electronics ... 2021 2024 2031

Σ

Quantum Communications

Aug 2022

<u>Quantum Communications</u> involves the generation and use of quantum states and resources for communication protocols that generate better or radically new applications and increased cybersecurity

Quantum communications can be considered to refer to the exploitation of quantum resources for:

- securing the communication of information
- transmitting quantum information
- transmitting information at a higher capacity than possible with purely classical systems

products and plans Address triggers and needs

External

(industry,

govt.)

This needed to meet targets

Development led by others, NMIs also contribute

Quantum Communications involves the generation and use of quantum states and resources for communication protocols that generate better or radically new applications and increased cybersecurity

2031

Quantum Sensing and Metrology

Aug 2022

Quantum Sensing and Metrology exploits quantum phenomena such as coherence and entanglement to develop new modes of measurements, sensing, and imaging that offer unprecedented levels of precision, and resolution.

Photonic Sensing and Metrology exploits quantum phenomena, such as **coherence** and **entanglement**, to develop novel methods of measurement, sensing, and imaging which significantly improve the precision of parameters of a wide range of systems.

Heisenberg limit (precision \propto 1/N)

govt.) products and plans Address triggers and needs This is needed to meet targets

External

(industry,

Development led by others, NMIs also contribute

Also:

Quantum Sensing and Imaging

Some photonics applications (also, recall presentation by Thierry Debuisschert)

Single-photon LIDAR

Quantum illumination

Sub-shot-noise imaging

Amplitude-squeezed spectroscopy

NV- centre sensing

Squeezing and entanglement for gravity wave detectors

	GUANTUM TECHNOLOGIES	Quantum Sensing and Metrology exploits quantum phenomena such as coherence and entanglement to modes of measurements, sensing, and imaging that offer unprecedented levels of precision, and resolution.	develop new
(Triggers and needs	5.2 Certified sensor performance	External
		5.1 Enhanced sensors available commercially The targets and metrics are related to industry and the economy to support new developments and product in the field of photonic QT. Support by metrology is perceived to be fundamental to the take-up of the quantum technologies market	(industry, govt.) products and plans
		4.3 Standardised test procedures	Address
	Targets	4.2 Measurement services to demonstrate quantum enhanced measurements	triggers and
		4.1 Traceability of operational methods and systems based on calibration, certification, etc	needs
	Metrological applications	3.3 Testing quantum hardware in real-life scenarios	
		3.2 Comparisons and validation of characterization techniques	
		3.1 Metrology of key enabling technologies	This is
log		2.5 Characterisation of sensor properties	needed
etrc		2.4 Robust test methods and instrumentation	to meet
Σ	Experimental	2.3 Traceability	targets
	Calisations	2.2 Development of appropriate performance metrics	
		2.1 Use cases identified/proof of concept	
		1.5: Detection schemes	evelonment
	En <mark>abling</mark>	1.4: Optomechanical sensors	evelopment ad by others
	Science and	1.3: All-optical set-ups	Mis also
	Te <mark>chnlogies</mark>	1.2: Artificial atom-like systems for sensing and metrology	ontribute
		1.1: Dasic technology: Lasers, detectors, optics, electronics	

EMN-Q in "Framework Partnership Agreement" (FPA)

FPA for "open testing and experimentation for quantum technologies": 'Qu-Test' Call: HORIZON-CL4-2021-DIGITAL-EMERGING-02

Topic: HORIZON-CL4-2021-DIGITAL-EMERGING-02-22

- Partnership of European testbeds for quantum technology, coordinated by TNO (NL)
- Composed of distributed infrastructures with globally unique equipment and competencies across Europe.

Goal: To provide European industry with the necessary support in terms of infrastructure and know-how to move faster to the market and create a robust supply chain for the quantum technology market.

EMN-Q in "Framework Partnership Agreement" (FPA)

FPA for "open testing and experimentation for quantum technologies": 'Qu-Test'

"Qu-Photonics" in red

Testbed 1		Quantum Computing	Cryogenic quantum devices, cryogenic qubits (superconducting and semiconducting, photonic) and ion traps.
Testbed 2	o Co Co Co Co Co Co Co Co Co Co Co Co Co	Quantum Communication	Devices for Quantum Key Distribution (QKD) and Quantum Random Number Generation (QRNG).
Testbed 3	₩)		Sensing and metrology instruments provided by industry, and quantum sensors (e.g. based on colour centres).

EMN-Q Infrastructure in FPA 'Qu-Test'

EMN-Q services and facilities "Quantum-Photonics"

Service: Characterisation of single-photon detectors		
Facility: Trusted node for QKD		
Facility: PIQUET Nanofacility (Nanofabrication)		
Facility: Italian Quantum Backbone		
Facility: (Portable) single-photon OTDR [Optical time domain reflectometer]		
Service: Characterisation of single-photon detectors		
Service: Characterisation of single-photon sources	РТВ	
Facility: Niedersachsen Quantum Link		

Other significant EMN-Q infrastructure: NPL, CMI, DFM, METAS

EMN-Q in Standardisation (Quantum Photonics)

CENELEC

FGQT roadmap released on 18 Nov for comments by contributors and liaising committees Relevant topics – Single-photon sources and detectors, quantum communications

Draft standard for testing QKD systems Revision of standard 18031 on random bit generation

QKD – Common Criteria protection profile, test standards, security proofs, terminology

Standards for QKD networks

Terminology for single-photon metrology

Acknowledgements

Ivo Pietro Degiovanni (EMN-Q Chair, INRIM) Hansjörg Scherer (EMN-Q vice-Chair, quantum electronics, PTB) Mikael Lassen (EMN-Q vice-Coordinator, quantum photonics, DFM)

QUANTUM TECHNOLOGIES