

Pa Quantum Metrology: the present and the future

21st November 2022

Quantum Electronics in EMN-Q

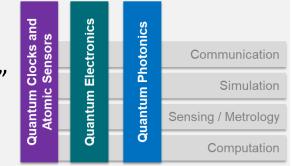
Hansjörg Scherer (PTB)



Q

QUANTUM TECHNOLOGIES

# **My personal functions**






### In EMN-Q:

Vice Chair,

Section Coordinator "Quantum Electronics" together with two Vice Coordinators: Félicien Schopfer (LNE) Antti Manninen (VTT-MIKES)



# "Quantum Electronics" in EMN-Q



# Two sub-fields

 $\rightarrow$  two roadmaps in the Strategic Research Agenda (SRA) of EMN-Q:

#### Quantum Metrology & Sensing 1.3 Industry & economy Instrumentation manufacturers, measurement and calibration services, trade harmonization **Triggers &** 1.2 Society Medical & life sciences, consumer protection, environmental protection Needs 1.1 Science & technology Foundations of quantum physics. SI traceability and fundamental consistency tests 2.5 Measurement & calibration services for QT industry and products 2.4 Standardization of QT products and related metrology 2.3 Technology transfer & commercialization of QT and related metrology tools and methods Targets 2.2 Advanced measurement science to support OT developments 2.1 SI unit realization & dissemination 3.2 Systems & products: "QT systems and products for metrology" Metrological Application 3.1 Support & services: "Metrology for QT" 4.8 Quantum metrology toolbox ("quantum multimeter") 4.7 Quantum-enhanced measurement schemes 4.6 Quantum-enhanced sensors & detectors 4.5 Fundamental metrology experiments Experimental Realization 4.4 Quantum-enhanced measurement bridges 4.3 Quantum current standards & charge devices (single-charge-based) 4.2 Quantum resistance & impedance standards 4.1 Quantum voltage standards & systems (JAWS technology) 5.3 Basic engineering Performance electronics, cryogenic and magnet technologies Enabling Science & 5.2 Materials & fabrication Materials science and engineering, nano-scale device and circuit fabrication technologies Technology 5.1 Fundamental science Solid-state quantum physics, quantum state engineering 2030 2020 2023

# **Quantum Computing**

| Triggers &<br>needs    | Quantum Computers harnesses non-classical resources of quantum systems<br>to solve important problems that are intractable on classical computers. |                  |                               |               |                                           |  |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------|---------------|-------------------------------------------|--|
|                        |                                                                                                                                                    |                  |                               | 5.4 Practic   | al QC in the cloud                        |  |
| Fargets,               |                                                                                                                                                    |                  | 5.3 Standar                   | dization and  | benchmarking                              |  |
| applications,          | 5.2 Metrology of software                                                                                                                          |                  |                               |               |                                           |  |
| services               | 5.1 Test and measurement services for QC systems and components                                                                                    |                  |                               |               |                                           |  |
| Software               |                                                                                                                                                    |                  |                               | 4.2           | Applications in chemistry,<br>Fintech, ML |  |
|                        | 4.1 Software for benchmarking and validation                                                                                                       |                  |                               |               |                                           |  |
|                        |                                                                                                                                                    |                  | 3.4 RF metr                   | rology for QC | systems                                   |  |
| Metrological           | 3.3 Metrology of materials and surfaces                                                                                                            |                  |                               |               |                                           |  |
| validation             |                                                                                                                                                    | 3.2 Measure      | ement protocols for qubits ar | nd processors |                                           |  |
|                        | 3.1 Metrology of key enabling technologies                                                                                                         |                  |                               |               |                                           |  |
|                        | 2.3 Development and optimization of fabrication processes                                                                                          |                  |                               |               |                                           |  |
| nabling<br>echnologies | 2.2 Systems, subsystems and packaging                                                                                                              |                  |                               |               |                                           |  |
| centrologico           | 2.1 Components & devices: qubits, couplers, microtraps                                                                                             |                  |                               |               |                                           |  |
|                        | 1.2 Algorithms&metrics development                                                                                                                 |                  |                               |               |                                           |  |
| Science                | 1.1 Develop                                                                                                                                        | ment of NISQ pro | cessors                       |               | 1.3 Error corrected qubits                |  |
| 20                     | 21                                                                                                                                                 |                  | 2023                          |               | 2030                                      |  |

# "Quantum Electronics" in EMN-Q

# **Quantum Metrology & Sensing:**

- Quantum voltage standards / systems based on the Josephson effect
- Quantum resistance and impedance standards / systems based on the quantum Hall effect(s)
- Quantum current standards and single-charge devices based on single-charge transport
- → Integrated quantum metrology systems e.g., quantum "multimeters" integrating different standards (in cryogen-free setups)

"Quantum classical" methodologies, based on "1<sup>st</sup> generation QT", established in NMIs.

Quantum-enhanced measurement systems, sensors and detectors

e.g., Josephson and digital impedance bridges, cryogenic current comparators, magnetometry with nitrogen-vacancy centres in diamond crystals, single-electron detectors ...



# "Quantum Electronics" in EMN-Q

# **Quantum Computing:**

- Qubits and qubit couplers (superconducting)
- Quantum-enhanced methods for qubit readout (measurement) and qubit control (manipulation)

e.g., superconducting amplifiers with quantum-limited noise performance, rf/microwave measurement methods and systems ... "2nd generation QT":

• Standardised protocols, methods and software

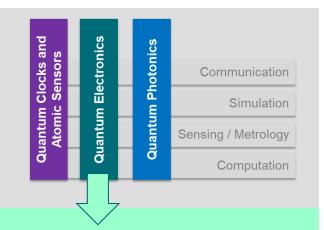
e.g., for benchmarking and validation of qubits processors data analysis





Entangled quantum states, quantum-limited / quantum nondemolition techniques.

EURA


# **Stakeholders in EMN-Q**



#### EMN-Q counts 284 stakeholders

#### in total, for all three pillars

- Industrial company
- Research organisation
- Academic institute
- Quantum Flagship body/project
- Other type of organisation (e.g. standardisation bodies)



#### From these: **70** stakeholders in "Quantum Electronics"

#### From these: 30 stakeholders are industrial companies

Stakeholder involvement is

central to EMN-Q!

20 of these industrial stakeholders have contacts to PTB ...

# **Industry Stakeholders in EMN-Q "Qu-Electronics"** with contacts to PTB



Measurement systems & instrumentation, highperformance electronics (enabling technologies):

| • | Magnicon              | MAGNÍCON Como<br>Prystori meseché dadi ustavimecholom | DE |
|---|-----------------------|-------------------------------------------------------|----|
| • | Sympuls               | SYM PULS                                              | DE |
| • | Signal Conversion     | Signal Conversion<br>Ltd.                             | UK |
| • | Applicos              |                                                       | NL |
| • | Guildline Instruments | GUILDLINE                                             | CA |
| • | Zurich Instruments    | Zurich<br>Instruments                                 | СН |
| • | Grimm Aerosol Technik |                                                       | DE |

Cryogenic systems (enabling technologies):

- Entropy
   DE
   Oxford Instruments
   OXFORD NANOSCIENCE
   UK
- Oxford Instrume
- Bluefors

| technologies): |  |
|----------------|--|
|                |  |
| A COLOR        |  |
|                |  |

°BLUEFORS

#### Quantum standards, systems & detectors (applications):

👷 supracon' • Supracon AG DF **Measurement International** CA ٠ SE Graphensic . **Graphene Waves** US GRAPHENE ٠ Qzabre CH . Mami CH Qnami .

Industrial calibration labs (applications):

esz calibration & metrology
1A Cal
1A Cal

Quantum computing (applications):

- IBM Research Quantum Europe CH
  - IQM FI/DE

.

FI

Industry Stakeholder Products: Examples Josephson Voltage Standards



# **DC and AC 'quantum voltmeters'** (up to 10 V, few kHz), commercially available, suppliers in DE, US.



# Industry Stakeholder Products: Examples Quantum Hall Resistance Standards

**Graphene devices** commercially available, suppliers in SE, US.




TECHNOLOGIES

graphensic







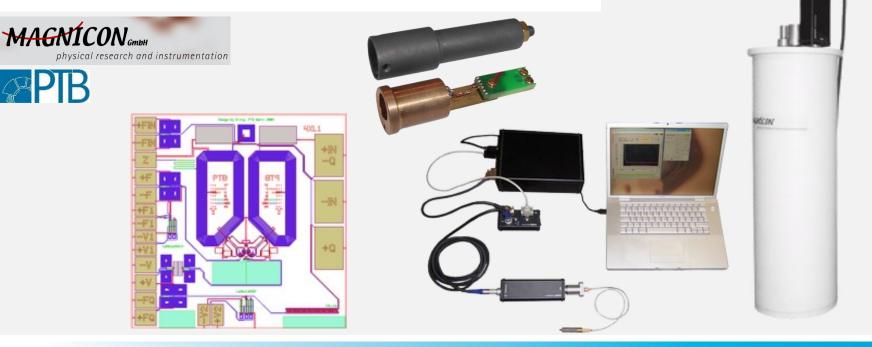
# Industry Stakeholder Products: Examples Cryogenic Current Comparators



... for high-end resistance bridges used in quantum Hall resistance metrology. Commercially available, suppliers in DE, UK.

> SQUID electronics

Digital double current source incl. nanovoltmeter

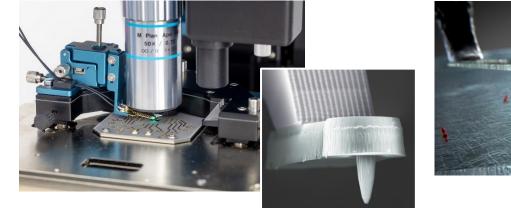

CCC with SQUID null detector (in Nb screen)

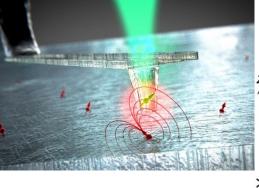


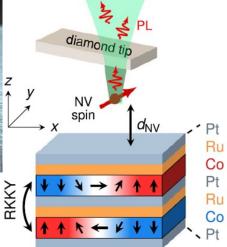


# Industry Stakeholder Products: Examples SQUID Sensors & Systems

... for various applications. Commercially available, many suppliers world-wide.





QUANTUM TECHNOLOGIES **EURAMET** 


# Industry Stakeholder Products: Examples Scanning Magnetic Microscopy Sensors & Systems



... using nitrogen-vacancy centres. Commercially available, e.g., suppliers in CH.







laser excitation





Finco *et al., Nat Commun* **12**, 767 (2021). https://doi.org/10.1038/s41467-021-20995-x

#### Project cooperation with NMIs

EMN-Q in "Framework Partnership Agreement" (FPA)



FPA for "open testing and experimentation for quantum technologies": 'Qu-Test' Call: HORIZON-CL4-2021-DIGITAL-EMERGING-02 Topic: HORIZON-CL4-2021-DIGITAL-EMERGING-02-22

- Partnership of European testbeds for quantum technology, coordinated by TNO (NL)
- composed of distributed infrastructures with globally unique equipment and competencies across Europe.

Goal: To provide European industry with the necessary support in terms of infrastructure and know-how to move faster to the market and create a robust supply chain for the quantum technology market.

> LABORATOIRE NATIONAL DE MÉTROLOGIE



SYRTE Pobservatoire | PSL

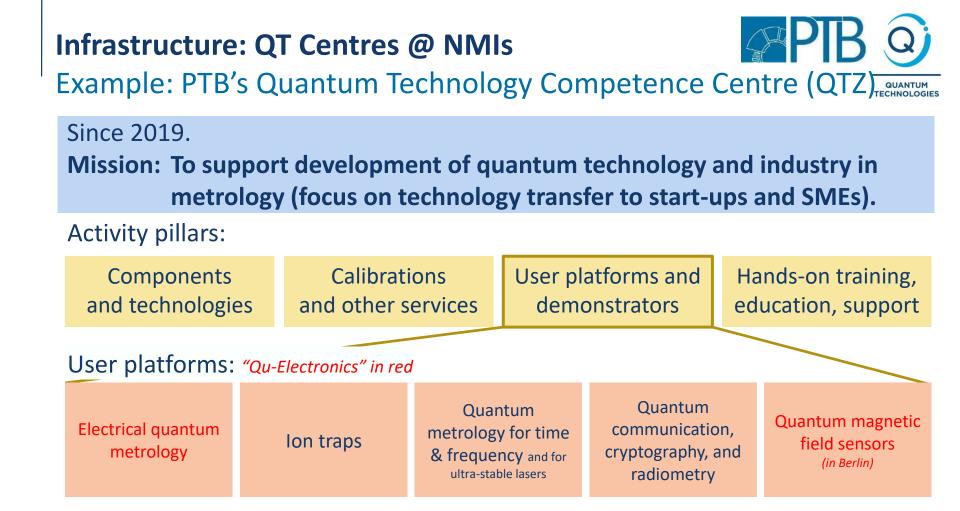
# EMN-Q in "Framework Partnership Agreement" (FPA)

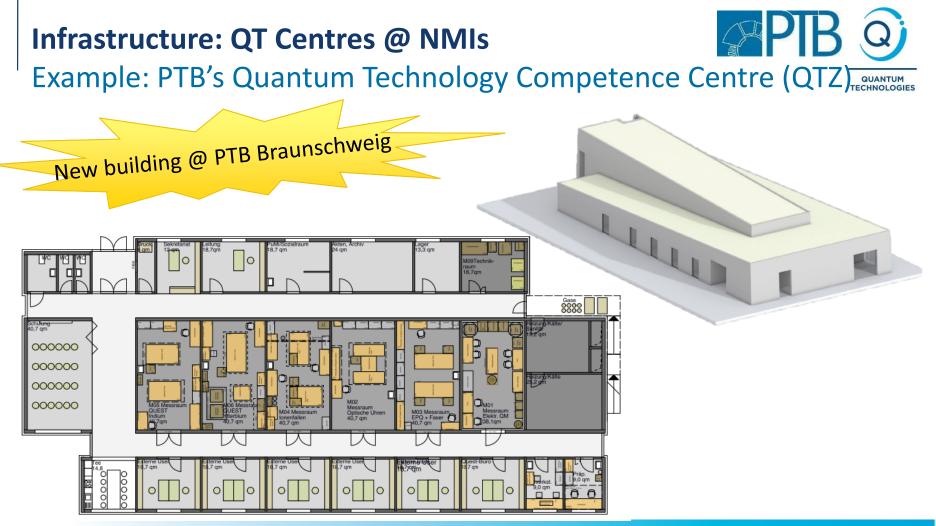


QUANTUM TECHNOLOGIES

# FPA for "open testing and experimentation for quantum technologies": 'Qu-Test'

"Qu-Electronics" in red


| Testbed 1 |      | Quantum Computing     | Cryogenic quantum devices, cryogenic qubits<br>(superconducting and semiconducting,<br>photonic) and ion traps.               |
|-----------|------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Testbed 2 |      | Quantum Communication | Devices for Quantum Key Distribution (QKD)<br>and Quantum Random Number Generation<br>(QRNG).                                 |
| Testbed 3 | ∿~)) |                       | Sensing and metrology instruments provided<br>by industry, and quantum sensors (e.g.,<br>clocks, gravimeters, magnetometers). |


# **EMN-Q Infrastructure in FPA 'Qu-Test'**



EMN-Q facilities "Qu-Electronics" in red

| Piemonte Quantum Enabling Technology (nanofabrication facility) | INRIM |
|-----------------------------------------------------------------|-------|
| Cryomagnetic characterisation environments for quantum devices  |       |
| QR Labs (micro/nanofabrication facilities)                      |       |
| Clean Room Centre                                               | PTB   |
| "Ion Traps" in the Quantum Competence Centre                    |       |
| "Metrology of Ultra-Low Magnetic Fields"                        |       |
| "Optical QT" in the Quantum Competence Centre                   |       |
| "Single Photons" in the Quantum Competence Centre               |       |
| "Electrical Quantum Metrology" in the Quantum Competence Centre | -     |
| Fundamental (primary standard) metrology laboratories           |       |
| Quantum electrical metrology laboratories                       | LNE   |
| Nanotech Institute / Innovation Centre "NanoMesureFrance"       |       |
| Quantum Metrology Platform                                      | 1     |
|                                                                 |       |







QUANTUM TECHNOLOGIES

# Infrastructure: QT Centres @ NMIs Example: PTB's Clean Room Centre

800 m<sup>2</sup> clean room area (nominally ISO 5, practically ISO 3)



- Electron beam lithography (100 kV)
- Molecular beam epitaxy
- Thin-film technology process/fabrication lines
- Electrical quantum standards: QHR: GaAs and Graphene JVS: Niobium SET: GaAs
- Sensors: (nano) SQUIDs



#### "Quantum Workshop". 21 November 2022: Qu-Electronics in EMN-Q

# **EMN-Q in Standardisation**

#### "Qu-Electronics" topics:

#### **Enabling Technologies**

- Colour centres in (nano)diamonds and other crystals
- Superconducting quantum circuits
- Traveling wave parametric amplifier
- Semiconductor quantum dots for quantum electronics

#### **QT** Components and Subsystems

- Single-photon detectors
- Single-electron sources

• ....

#### Quantum Computing and Quantum Simulation Systems

- Cryogenic solid-state based quantum computing architectures
- Room-temperature solid-state based quantum computing architectures

#### Quantum Metrology, Quantum Sensing, and Quantum Imaging

- Quantum magnetometers
- ...

19







# Quantum Electronics

QUANTUM TECHNOLOGIES

"Quantum Metrology: the present and the future" 21 November 2022





#### Physikalisch-Technische Bundesanstalt Braunschweig and Berlin

- **Bundesallee 100**
- 38116 Braunschweig
- Hansjörg Scherer
- Phone: 0531 592-2600
- E-Mail: hansjoerg.scherer@ptb.de
- www.ptb.de